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ABSTRACT 

In this paper we consider the numerical solution of stiff initial value problems, which lead 

to the problem of solving large systems of mildly nonlinear equations. For many problems 

derived from engineering and science, a solution is possible only with methods derived from 

iterative linear equation solvers. A common approach to solving the nonlinear equations is 

to employ an approximate solution obtained from an explicit method. In this paper we shall 

examine the error to determine how it is distributed among the stiff and non-stiff components, 

which bears on the choice of an iterative method. Our conclusion is that error is (roughly) 

uniformly distributed, a fact that suggests the Chebyshev method (and the accompanying 

Manteuffel adaptive parameter algorithm). We describe this method, also commenting on 

Richardson’s method and its advantages for large problems. We then apply Richardson’s 

method and the Chebyshev method with the Manteuffel algorithm to the solution of the 

nonlinear equations by Newton’s method. 
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Department of Energy grant DOE DEFG02-87ER25026. The research for the first author was partially 
supported by the National Aeronautics and Space Administration under NASA Contract No. NAS1-18605 
while in residence at the Institute for Computer Applications in Science and Engineering (ICASE), NASA 
Langley Research Center, Hampton, VA 23665. 
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1 Introduction 

The numerical solution of initial value problems requires at each time-step the solution of an 

implicit nonlinear equation, usually by a Newton-like iteration. As a result it is necessary to 

solve a system of linear equations, which is often large and sparse. It has been customary 

to use direct methods, but in recent years studies on the suitability of iterative methods 

[18, 9, 3, 11 have been emerging. 

This paper examines some issues in the application of iterative methods to initial value 

problems (IVPs). First, we identify more clearly the nature of the task to be performed by 

the iterative solver. A number of comments have been made about the question of whether 

the predictor error lies primarily in the dominant subspace. These comments have not been 

convincingly supported by analysis. The difficulty with the analysis of stiff equations is that 

of knowing which quantities are large and which are small - these things change during the 

course of the integration. We believe we have found a satisfactory way of dealing with this 

question and that is to regard as small those quantities which the error control mechanisms 

of the algorithm make small. Second, we explain why the Chebyshev method might be well 

suited as an inner iteration to solve the linear equations arising at each step of the Newton 

step. In addition we consider an application of the first order Chebyshev method to the 

outer, Newton iteration. (The first order Chebyshev method is Richardson’s method with 

Chebyshev parameters.) 

This paper is a preliminary theoretical study; the accuracy and usefulness of our obser- 
vations await experimental confirmation. 

1.1 Outline of the Paper 

In 52, the standard time-stepping approach for solving linear and nonlinear stiff IVPs is 

described in a simplified way. When the IVP is nonlinear, a variant of Newton’s method is 

employed at each time step, usually the modified Newton’s method in which the Jacobian 

is not always up-to-date. (It will be convenient to say Newton’s method, however, rather 

than either modified Newton’s method or, as is also used, the modified inexact Newton’s 

method.) Each Newton step requires the solution of a linear system for which the matrix is a 

Jacobian, either the current Jacobian or one saved from a previous Newton step. (Matrix-free 

methods avoid explicit computation of the Jacobian but from time to time the Jacobian will 
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be referred to as though it had been computed and is available.) Assume that an iterative 

method is used to solve the linear system. This is an inner iteration whereas Newton's 

method is an outer iteration in a combined inner-outer iteration. 

Iterative methods differ in the ways in which the error is reduced. In $3, the error in the 

predictor step is analyzed. The predictor step may be thought of as the initial guess for the 

inner iteration, leading to the discussion in 94 of appropriate (inner) iterative methods for 

reducing the error in the predictor. 

In $5, an application of techniques employed in the Chebyshev iterative method is made 

to the outer iteration to give more control over convergence. 

1.2 Terminology and Notation 

It is customary to discuss the solution of IVPs only in the real case. However, to take into 

account the importance of complex IVPs, we use the more general and more appropriate 

terms hemitian and nonhemitian rather than symmetric and nonsymmetric. 

The Jacobian of functions f and F will be denoted by f' and F' respectively. 

The computed approximation to the solution of an IVP at step n will be denoted by y,. 

Usually, yn is obtained by approximately solving a nonlinear equation, the exact solution of 

which, when clarity is required, will be denoted by yl. 

2 Nonlinear Iteration in IVPs 

Assume a transient problem y'(t) = f(y(t))  with an appropriate set of initial values. (For 

convenience, we assume the system is expressed in autonomous form.) If the equation is stiff, 

the standard numerical solution methods, based on Newton's method, yield linear systems to 

be solved. We illustrate with backward Euler. There is little reason to believe that the ideas 

do not apply to other implicit difference schemes. For backward Euler, the approximation, 

yn, to y ( t n )  at t ,  is the computed solution of 

This is an implicit equation for the unknown yl. Rearranging (1) slightly, it is necessary to 

solve an equation of the form 

1 1 
F ( y i )  := -y: - f ( y i )  - -yn-1 = O 

hn hn 
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The solution of (2) by Newton’s method requires the solution of the linear systems 

Customarily using a direct method one iterates with 

where G is a Jacobian of F kept either from an old time step or from an earlier iteration 

and c is an acceleration parameter. Since G is a matrix, it follows that computing the vector 

z = G - l ~ ( y i ~ ) )  is equivalent to solving a set of linear equations, 

The solution of the nonlinear equation (2) is called the corrector step, and the initial 

approximation of yf) := yf: obtained from an explicit multistep formula is called the predictor 

step. 

One could instead approximate the solution of (3) by means of a matrix-free iterative 

method. Such methods require only that we be able to compute the action of the Jacobian 

matrix F’(gim))v for an arbitrary vector v .  This can be accurately approximated by 

for some small b of the order of the square root of the machine epsilon. Note that F(yim)) 

is already available, because it is the right-hand side of the linear system (3). Hence each 

iteration of a typical linear iterative solver requires but one function evaluation. The stopping 

criterion for the inner linear iteration would be based on that of the outer Newton iteration. 

This question of when to stop the inner iteration is not easy: one would like to avoid 

unnecessary inner iterations without degrading the convergence of the outer iteration. Hence 

it has been proposed [4] that a single nonlinear iteration would be more efficient than a 

two-level iteration. However the one-level iteration proposed in [4] requires two function 

evaluations per iteration; whereas the two-level iteration requires one function evaluation 

per inner iteration and one per outer iteration. 

Currently it seems more practical to use iterative methods to solve (5) if there is some 

preconditioning, although this usually requires that an explicit matrix be available. 
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3 Accuracy Needed 

Much discussion has focused on this objective of the nonlinear solution to impose stability 

[9, 31; In this section, we present some analysis to show what components of the error should 

be reduced by an iterative method. 

Consider now the backward Euler formula 

where the residual (per unit step) F, := F(yn) would be zero if the nonlinear system were 

solved exactly. 

One question concerns the nature of the error in the predictor. In practice, the predictor 

is usually 

yf: = Yn-1 + hnYn-1,n-2 (7) 

where the double subscript denotes a first divided difference. (Often this is written y,’ = 
yn-l + hnyk-l where yk-l is chosen, not to satisfy yk-l = f(yn-l), but rather to satisfy 

the formula used on the (n - 1)-st step. If this formula is backward Euler, then yn-l = 

Yn-2 + hn-1Yn-1 I determines Y A - ~ . )  The residual F,‘ := F(yE) for the predicted value satisfies 

and the nature of this residual depends on how the stepsize is controlled. It is customary to 

control the stepsize h,-l so that Ilik,-lll 5 E and to choose h,, so that r~l l~en-l l l  5 (safety 

factor) E ,  where E is the local error tolerance, is a local error estimate, and r, is the 

stepsize ratio hn/hn-l. For the local error estimate, it is common to use 

., 

where the triple subscript denotes a second divided difference. What is wanted is an expres- 

sion for the predictor residual which, as much as possible, is in terms of quantities known to 

be small. It will be shown at the end of this section that 

F,” = (1 + rn)Fn-l - TnFn-2 

- -rn( 1 2  1 + rn-l)Zen-l -1 - + nonlinear term 
hn 

where the nonlinear term is given in a later paragraph. 
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Let y: be the exact solution of F(y:) = 0. Codes attempt to control the error, 6, = 

y: - yn, in the solution typically so that it is no greater than some fraction 4 of the local 

error tolerance: 

I I Sn I I L 4~(hopefully). 

In practice, an approximation for the error is necessary, and usually this is a scalar multiple 

of yimfl) - yim) . The widely distributed package DASSL[20] uses 4 = 1/3. We now want 

to look at (10) to determine what the iterative linear equation solver must do. To simplify 

this description, neglect the nonlinear term as well as variations in the stepsize and in the 

Jacobian matrix f’ of f. Under these assumptions the error 6, in solving for yn satisfies 

and the predictor error 6pn satisfies 

The conclusion is that the nonstiff error must be reduced by as much as 1/ (3  + 24-’) (set 

hf’ = 0) and the stiff error by as much as 1/3 (set hf’ = -00). Trying to control the error 

in an iteration based on the size of the correction is tricky unless the convergence is rapid; 

thus, DASSL requires a convergence factor not greater than 0.9. Therefore, for an iterative 

method one might want to consider controlling the residual instead [25, 31. The price for 

this is that instead of reducing the error by 1/(3 + 4-l) in just the nonstiff components, 

the more severe reduction must be done for all components. In addition, [5] argues that the 

possible skewness of the eigensystem of f’ can make it risky to control the residual. 

One might consider loosening up on the fraction 4; however, the stability of the method 

[16] and the reliability of the local error estimation depends on having an accurate solution 

of the nonlinear system. Nonetheless, this matter should be re-examined because of its 

importance to the efficient use of iterative (non)linear equation solvers. 

It remains to discuss the nonlinear term in (lo), which can be shown to be 

1 
2 

nonlinear term = -h i (  1 + ~,1)(S”),-1Yn-l,n-2yn-l,n-2 

where (p’)n-l is some average value of f”. It seems quite possible that this could be a 

significant part of the stiff error for some problems. It can be shown that the contribution of 

the nonlinear term to the residual can be computed at a cost of one function evaluation (and 
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estimated for practically nothing). It is a question whether the nonlinear error has a special 

structure, and whether stepsize control should ensure that the nonlinear error is small. 

Recently, a different stepsize control strategy has been proposed in [14], which for our 

example would mean using hnyn,n-l for the local error. This is consistent with current 

practice in nonstiff solvers where the stepsize is controlled for a formula that is one order 

lower than that actually used. The foregoing analysis of the predictor error simplifies in this 

case. 

We conclude this section by deriving (10). Using Eqs. (6,-2)’, (6,,-1), and (8n) to 

determine Fn4, Fn-l, and I?: with y: eliminated by Eq. (7), we get 

where 

Z ( t )  = f(Yn-1 + (t  - tn-l)Yn-l,n-2). 

Hence, using (12) and (13) to create second divided differences, we get 

We can express the divided difference 

where the Peano kernel K ( t )  is the hat function for t = 

define 

divided by h, f hn-l. If we 

and use (9), we get 

from which (10) follows. I 
I lThe notation means that in (6, n is replaced by n - 2, and similarly in the next two references. 
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4 Iterative Linear Solution Methods 

In this section, iterative methods will be sketched, focusing on the Chebyshev method and 

Richardson's method. Technicalities will not be emphasized. 

4.1 Krylov Subspace Methods 

Let Az = b be a linear set such as in (3). Let do) be an initial guess and do) := b - Ado)  

be the initial residual. The iterative methods that will be considered here are such that the 

solution approximation is of the form .(a) = z(O)+y,  where y E K := span{d0), . . . , A'-ld0)), 
and is the Krylov subspace. Such methods are called Krylov subspace methods. (Another 

widely used term for Krylov subspace methods is polynomial methods.) They include and 

unify a large class of methods, such as the conjugate gradient method, and for nonhermitian 

matrices, the adaptive Chebyshev iteration of Manteuffel [17], and Richardson's method 

together with GMRES [21], ORTHOMIN and other conjugate gradient-like methods. 

4.2 The Residual Polynomial 

Let z(') be the ith approximation resulting from an iterative method. Also let e(') = x - z(') 
and di) = b - Ad') be the error and residual respectively. For a Krylov subspace method, 

the error e(') is related to the initial error by a residual polynomial R, defined by e(') = 

&(A)e(O). The name results from the fact that the same polynomial propagates the residual, 

r(') = R;(A)r('). (The GMRES and ORTHOMIN methods are restart methods for which 
e(') may be the initial error due not to the initial approximation of Az = b but to some 

later approximation. Also the adaptive Chebyshev method of Manteuffel [17] is a restart 

method.) 

4.3 Types of Acceleration 

Methods differ in the way that the residual polynomial is determined. Thus, in conjugate- 

gradient-like methods the residual polynomial minimizes a certain weighted norm of the error. 

In the Chebyshev method the polynomial is chosen as that polynomial minimizing a uniform 

norm over an ellipse among all residual polynomials of a fixed degree and turns out to be 

a scaled and translated Chebyshev polynomial. There are practical differences among these 

methods of course. Conjugate-gradient-like methods determine their residual polynomial 
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in an automatic way whereas the Chebyshev method requires a set of parameters, which, 

nevertheless, can be computed in an effectively automatic way by means of the Manteuffel 

algorithm [ 171. 

The Manteuffel algorithm chooses parameters based on an estimate of the convex hull 

of the eigenvalues, beginning, for example, with a point known to be inside the convex hull. 

After every 20 or so iterations the convex hull is expanded (and the parameters recomputed) 

to include estimates of several stray eigenvalues. The combination of the Chebyshev method 

with the Manteuffel algorithm will be referred to as the adaptive Chebyshev method (of 

Munt eu $el). 

One advantage of the adaptive Chebyshev method is as follows. The solution of stiff 

IVPs yields a succession of linear systems to solve, each one often not much different from 

the previously solved problem. This is certainly true for the linear systems arising from 

successive Newton iterations. From one time-step to the next there may be a significant 

change in A = :I  - f’ due to changes in h, but it is straightforward, in the absence of 

preconditioning, to calculate what this does to the eigenvalues of the matrix A. The idea 

then is that eigenvalue estimates from one linear system can be used as initial estimates 

for the next system. However, because the algorithm works only by expanding the convex 

hull approximation, it would be important to begin the solution of a new linear system by 

suitably shrinking the final convex hull from the previous system so that it lies inside the 

true convex hull. 

4.4 Richardson’s Method 

The Chebyshev method minimizes the residual polynomial over an ellipse, which will be 

called the Munteuflel ellipse, containing the convex hull (approximately) of the spectrum of 

the system matrix A. If the convex hull is not well-approximated by the enclosing Manteuffel 

ellipse, then one might want to consider an iterative method for which the residual polynomial 

is minimized over the convex hull. If the convex hull is not elliptical a second order iteration 

is not, in general, possible. (A second order iteration is one for which the iterate is optimum 

at each step; the Chebyshev iteration is an example. Second order iterations require that 

the residual polynomial be generated by a three term recursion. In general a three term 

recursion does not exist.) However, a first order method is always possible. A first order 

3The convez hull of a set of points is the intersection of the convex sets containing the set of points. 
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method is often called Richardson’s method. (For a statement of Richardson’s method in 

algorithm form, which is not necessary for this discussion, see [13].) 

It should be noted that Richardson’s method does not require working with a convex 

hull; a general nonconvex set containing the eigenvalues may be used instead. A reason for 

using the convex hull is that it may be computed from known procedures, whereas there is 

no known, general procedure for computing a non-convex region containing the spectrum. 

If Richardson’s method is used, the parameter difficulty is much the same as for the 

adaptive Chebyshev algorithm of Manteuffel. In fact if the residual polynomial is a scaled 

and translated Chebyshev polynomial, then Richardson’s method is just a first order imple- 

mentation of the second order Chebyshev method used in the Manteuffel algorithm. 

In [23], an adaptive algorithm is presented for Richardson’s method that determines the 

convex hull of the spectrum in a way analogous to the Manteuffel algorithm. It should be 

noted that the adaptive method in [23] is a combination of two iterative styles, one from the 

GMRES method, used both to advance the solution and compute an approximate (convex 

hull of the) spectrum, and the other from Richardson’s method. This combination was 

suggested in [6]. 
One final note on Richardson’s method: The simplicity of the method is an advantage 

on advanced processors when organizing the computations to minimize data traffic [22]. 

4.4.1 Minimizing the L2 Norm of Residual Polynomials 

If the convex hull is determined, then one can determine the residual polynomial in an 

optimum way to satisfy a weighted La norm induced from the inner product, 

where 

in the application to the Richardson’s method parameter problem. 

is a contour in the complex plane, the boundary of the convex hull of the spectrum 

The L2 optimal residual polynomial of degree k is defined to be the solution of the least 

squares problem ( R k ,  = minimum. There are methods [24] to compute the roots of this 

polynomial related to the stable algorithm of Golub and Welsch for the computation of nodes 

and weights for Gaussian quadrature [ll]. The reciprocals of the roots of the polynomial 

then become the parameters required for Richardson’s method. 
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4.4.2 Minimizing the Uniform Norm of Residual Polynomials 

In the literature recently there have been ideas developed for the practical computation of 

Richardson's method parameters for which the residual polynomial is approximately min- 

imized in the uniform norm [7, 8, 19, 261. These methods use the theory of conformal 

mapping and the properties of Faber polynomials. The resulting residual polynomial may 

be called here the L,  optimal residual polynomial. An important contribution from [8, 261 

is an algorithm for ordering the parameters for Richardson's method to ensure stability. 

In the adaptive algorithm in [23], an L2 optimal residual polynomial is computed and 

used but this is not a restriction and the L, optimal residual polynomial could be used 

instead. 

4.5 The Appropriate Iterative Method for IVPs 

The nature of the error reduction needed to solve the IVP was briefly explained in 93. 

Equation (11) shows that 

sf: = e' + A-le" 

where A = I - hf', lle'll 5 3 4 ~  and lle''ll 5 2 ~ .  From this expression, one sees that the 

nonstiff error must be reduced by as much as 1/(3 + 24- l )  and the stiff error by as much as 

1/3. A simplified and satisfactory conclusion to draw from this is that the stiff and nonstiff 

errors should be damped uniformly. Thus if the spectrum is well approximated by an ellipse, 

the adaptive Chebyshev method of Manteuffel is reasonable. If it is not, one may want to 
consider Richardson's method. If the residual polynomial is determined by minimizing the 

L2 norm of the residual polynomial derived from the inner product (14), then a reasonable 

choice for the weight is 

w(X) = 1. 

It should be noted that this is not the Chebyshev weight function, which is the weight 

function that should be selected if the convex hull is an interval (of positive numbers), and 

so causes the L2 norm to behave like the uniform norm only approximately. 

In using either the conjugate gradient method in the hermitian positive definite case 

or conjugate gradient-like methods in the nonhermitian case a weight is imposed on eigen- 

components of the error equal to the magnitude of the corresponding eigenvalue. As argued 

here, such a weight function is not appropriate. 
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5 Accelerating the Newton Iteration 

From $2, the Newton iteration is, for m 2 0, 

(m+l) = ypm) - c&- 'F (yp)  
Yn 

where c is an acceleration parameter and 
1 

(Recall that the solution of F (y )  = 0 is denoted by y = y:.) A sequence of acceleration 

parameters will be derived by interpreting iteration (15) as a preconditioned Richardson's 

iteration. With an assumption of linearity, acceleration parameters may then be derived by a 

straightforward application of standard adaptive iteration parameter techniques [17, 13, 231. 

Other approaches are possible, for example, [15]. An extended treatment of the solution of 

nonlinear equation by Krylov subspace methods is given in [2]. 

5.1 Krylov Subspace from a Nonlinear Operator 

A subspace will be defined that is generated by the preconditioned nonlinear operator, G-'F, 

appearing in Newton's method. A linear approximation to the nonlinear operator allows 

the subspace to be interpreted as a Krylov subspace. In turn, the Krylov subspace yields 

acceleration parameters based on Chebyshev polynomials. 

5.1.1 Linear Approximation 

Let M be the Jacobian of G-'F evaluated at yr) ,  M = G-'F'(y?)). Matrix M is only an 

aid to exposition, and, of course, is never computed. The true assumption is not that the 

Jacobian is evaluated at yf) but that the Jacobian is slowly varying during some portion of 

the Newton iteration. If so, then the point at which M is said to be the Jacobian of G-lF 
is arbitrary, and, in particular, the choice yc)  is arbitrary. 

Since G is the Jacobian of F evaluated at some y$"), it would follow that M # I unless 

Y n' (m') = yi'). Therefore, assume that &? # y r ) .  

5.1.2 Newton's Method as Richardson's Method 

Given an approximation yim) to the solution of G-'F(yn) = 0 , let 

,(m) = -G-lF(yp) 
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be the residual due to yim). Equation (15) becomes I 

Subtract (17) from y i  = y: to obtain 

it follows from (18) that 

e(m) M ( I  - cM)e(m-l). 

Therefore 
e(m) M ( I  - cM)"e('). 

I Multiply (20) by M to obtain 
I ,(m) M ( I  - cM)"r(O). 

5.1.3 Krylov Subspace 

As the Newton iteration proceeds, a Krylov subspace, V k ,  is defined by I - cM 

Although v k  is not computed, the subspace 

v k  := span{r(' a) k-1 

is available and 
v k  M v k .  

Computations requiring v k  can be performed using V k .  
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5.2 Chebyshev Acceleration Parameters 

From the k vectors in V k ,  k - 1 eigenvalues of M may be estimated. (It should be noted 

that in practice, k is a small number; in the code DASSL, the total number of Newton 

steps is limited to 4.) From these eigenvalues, the convex hull of the spectrum of I - cM 

can be computed, which yields [17] two parameters d and ceapre from which a sequence 

of acceleration parameters c may be computed. Parameter d is the center of a family of 

confocal ellipses for which the foci are d f  ceupsc. The Manteuffel algorithm determines these 

parameters in order to optimize convergence of the Chebyshev method. 

The d and cefipae parameters yield a sequence of Chebyshev parameters to use as follows. 

Let IC be the total number of Newton steps to be executed. Of course IC is not known; 

however, for the moment, assume that it is. Let c,-l, m = k + 1,. . . ,I, 1 5 IC be the 

reciprocals of the roots of the polynomial 

where Tj is the Chebyshev polynomial of degree j. 

In place of (17), execute 

f o r m =  k + 1 ,  ..., 1. 
There is an obvious difficulty to resolve: the number 1 must be determined in advance, 

and must satisfy 1 5 IC, where IC is unknown. One approach is this. Choose some fixed 1 and 

compute the Chebyshev parameters. It is not expected that 1 = IC so that either there are too 

few parameters c, to get to Newton step IC or there are too many. If there are not enough, 

then recycle the old, computed parameters c,,,, in which case eventually either there will be 

unused parameters c, or all parameters will have been used. Thus, plans must be made 

for unused parameters. To prepare for too many parameters, order c k ,  . . . ,cl-l by either of 

the methods of [26] or [8], which exploit the known mapping of Chebyshev polynomial roots 

onto the unit circle to obtain an ordering for which, heuristically, l l ~ ( ~ ) ( I  < lid"+')[[. (These 

ordering techniques are more general, however, and are not restricted to the Chebyshev 

case.) With this ordering one may reasonably choose 1 - k = 4, even though this number of 

parameters is not likely to be reached within a single time step by a solver such as DASSL. 
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Another approach to the problem of excessive parameters c, is to use the second order 

formulation of the Chebyshev iteration. The following is an adaptation of the algorithm in 

[17]. Recall that the residual is F(yik)). 
1. Set Qk+l := l/d. 
2. Set Ayik) := Q k + l r  ( k ) ,  

3. Set yik+l) := yik) + Ayik) 
4. Set dk+') := ~ ( y i ~ + l ) ) .  

5. Do for rn = IC + 2 by 1 until conver ence: 
2 5.1 Set a, := l/([d - cefip]a,-1/4). 

5.2 Set 7, := dam - 1. 
5.3 Set Ayi"+l) := 7,,,Ay,, (m-4 + a,+--l).. 

5.4 Set yim) := yim-l) + Ayi"+'). 
5.5 Set drn) := ~ ( y i ~ ) ) .  

Enddo 

For another application of Richardson's method to nonlinear problems, see [lo, 121. 

5.3 Changing the Stepsize 

Changing the stepsize causes a potentially large change in the Jacobian of F .  The effect of 

this on the Newton's method Chebyshev parameters will be estimated under the assumption 

that no preconditioning was used at step n to solve the linear systems with matrix 6. 
Additional assumptions are (i) the matrix G does not change; (ii) the solution of the linear 

systems at step n with matrix G has been by the Manteuffel adaptive Chebyshev algorithm, 

which yields the convex hull of G; (iii) G was not preconditioned during the Chebyshev 

iteration; and (iv) that the eigenvectors of F ' (yr j l )  and F'(y$"? are approximately the 

same. 

5.3.1 

We outline a technique to apply the work to compute the parameters at step n to the 

computation of the parameters at step n + 1. 

Operator Approximation at Step n + 1 

At this point it is convenient to denote the dependence of F and M on n by F, and M,. 
The acceleration parameters c, are determined by the convex hull of approximations to 
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Consider the expression on the right. Recall that 

The other factor on the right of (23) is 

5.3.2 The Convex Hull at Step n + 1 

The convex hull of Mn+1 

It is assumed that 

in (24) may be estimated in terms of known quantities as follows. 

Let 

From (25) and (26), (24) 

Mn+ 1 

1 1 pn = - - -. 
hn+ 1 hn 

becomes 

x [hL-'I- f'(&?)]- [pnI + h i l l  - f'(yf)))] 
1 

= pnG-l + M,. 

The convex hull of Mn+l is needed. The eigenvectors of f ' (yt))  and f'(yLTf)) are assumed 

to be approximately the same. It follows that the eigenvectors of Mn and G are approximately 

the same. Therefore, if the convex hull of each matrix on the right of (28) were known then 

an approximate convex hull of the sum could be easily computed. The convex hull of Mn 

is assumed known from the preceding time step. It remains to determine the convex hull of 

G-' approximately. 

The adaptive Chebyshev method was assumed to have been used to solve the linear 

The convex hull of G is systems at the preceding step, n, for which the matrix is G. 

therefore known. An approximation to the convex hull of G-' is therefore easily obtained. 

4Note that this application of the adaptive Chebyshev method is in the execution of the inner iteration 
rather than the outer Newton iteration. 
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6 Summary 

In this paper, a simplified analysis has been presented for the predictor error. It suggests 

that when using ~ iterative method for the inner iteration (with Newton’s method or a 

variant of Newton’s method as the outer iteration), the iterative method should be one for 

which components of the error are damped approximately uniformly. Two classes of iterative 

methods are sketched for which the error is damped in a uniform way, the adaptive Chebyshev 

method of Manteuffel and Richardson’s method. Richardson’s method is preferable if the 

spectrum of the inner iteration matrix is not well approximated by an ellipse. 

If the (modified) Newton’s method step is viewed as one step of Richardson’s method, 

the usual techniques for computing iteration parameters adaptively may be used to enhance 

convergence of Newton’s method with a parameter sequence. In the case when no precondi- 

tioning is used for the inner iteration, the parameters may be recomputed at low cost when 

the stepsise changes. 
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